Hence the need for plant neurobiology, a new field “aimed at understanding how plants perceive their circumstances and respond to environmental input in an integrated fashion.” The article argued that plants exhibit intelligence, defined by the authors as “an intrinsic ability to process information from both abiotic and biotic stimuli that allows optimal decisions about future activities in a given environment.”
In a recent experiment, Heidi Appel, a chemical ecologist at the University of Missouri, found that, when she played a recording of a caterpillar chomping a leaf for a plant that hadn’t been touched, the sound primed the plant’s genetic machinery to produce defense chemicals. Another experiment, done in Mancuso’s lab and not yet published, found that plant roots would seek out a buried pipe through which water was flowing even if the exterior of the pipe was dry, which suggested that plants somehow “hear” the sound of flowing water.
A recent study in Science found that the caffeine produced by many plants may function not only as a defense chemical, as had previously been thought, but in some cases as a psychoactive drug in their nectar. The caffeine encourages bees to remember a particular plant and return to it, making them more faithful and effective pollinators.
Mancuso speculates that the plant could be employing a form of echolocation. There is some evidence that plants make low clicking sounds as their cells elongate; it’s possible that they can sense the reflection of those sound waves bouncing off the metal pole. The bean plant wastes no time or energy “looking”—that is, growing—anywhere but in the direction of the pole.
The pattern of nutrient traffic showed how “mother trees” were using the network to nourish shaded seedlings, including their offspring—which the trees can apparently recognize as kin—until they’re tall enough to reach the light. And, in a striking example of interspecies coöperation, Simard found that fir trees were using the fungal web to trade nutrients with paper-bark birch trees over the course of the season. The evergreen species will tide over the deciduous one when it has sugars to spare, and then call in the debt later in the season. For the forest community, the value of this coöperative underground economy appears to be better over-all health, more total photosynthesis, and greater resilience in the face of disturbance.
Michael Pollen writing for the New Yorker